Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Sci Total Environ ; 927: 171888, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531442

RESUMO

Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.


Assuntos
Lignina , Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Lignina/metabolismo , Eliminação de Resíduos Líquidos/métodos , Benzaldeídos/metabolismo , Furaldeído/metabolismo , Biomassa , Poluentes Químicos da Água , Chlorella/metabolismo
2.
Microb Biotechnol ; 17(3): e14448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498302

RESUMO

Pseudomonas putida is a soil bacterium with multiple uses in fermentation and biotransformation processes. P. putida ATCC 12633 can biotransform benzaldehyde and other aldehydes into valuable α-hydroxyketones, such as (S)-2-hydroxypropiophenone. However, poor tolerance of this strain toward chaotropic aldehydes hampers efficient biotransformation processes. To circumvent this problem, we expressed the gene encoding the global regulator PprI from Deinococcus radiodurans, an inducer of pleiotropic proteins promoting DNA repair, in P. putida. Fine-tuned gene expression was achieved using an expression plasmid under the control of the LacIQ /Ptrc system, and the cross-protective role of PprI was assessed against multiple stress treatments. Moreover, the stress-tolerant P. putida strain was tested for 2-hydroxypropiophenone production using whole resting cells in the presence of relevant aldehyde substrates. P. putida cells harbouring the global transcriptional regulator exhibited high tolerance toward benzaldehyde, acetaldehyde, ethanol, butanol, NaCl, H2 O2 and thermal stress, thereby reflecting the multistress protection profile conferred by PprI. Additionally, the engineered cells converted aldehydes to 2-hydroxypropiophenone more efficiently than the parental P. putida strain. 2-Hydroxypropiophenone concentration reached 1.6 g L-1 upon a 3-h incubation under optimized conditions, at a cell concentration of 0.033 g wet cell weight mL-1 in the presence of 20 mM benzaldehyde and 600 mM acetaldehyde. Product yield and productivity were 0.74 g 2-HPP g-1 benzaldehyde and 0.089 g 2-HPP g cell dry weight-1 h-1 , respectively, 35% higher than the control experiments. Taken together, these results demonstrate that introducing PprI from D. radiodurans enhances chaotrope tolerance and 2-HPP production in P. putida ATCC 12633.


Assuntos
Deinococcus , Hidroxipropiofenona , Pseudomonas putida , Benzaldeídos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Deinococcus/genética , Acetaldeído/metabolismo
3.
Appl Environ Microbiol ; 90(3): e0215523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38380926

RESUMO

Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the ß-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.


Assuntos
Lignina , Rhodococcus , Lignina/metabolismo , Benzaldeídos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
4.
Biotechnol Prog ; 40(2): e3417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415921

RESUMO

Maize bran, an agro-processing waste residue, is a good source of ferulic acid that can be further valorized for vanillin production. However, extraction of ferulic acid from natural sources has been challenging due to low concentrations and intensive extraction procedures. In the present work, ferulic acid streams (purities ranging from 5% to 75%) extracted from maize bran using thermochemical methods were evaluated for biotransformation to vanillin, employing Amycolatopsis sp. as a whole-cell biocatalyst. Initial adaptation studies were critical in improving ferulic acid assimilation and its conversion to vanillin by 65% and 56%, respectively by the fourth adaptation cycle. The effect of cell's physiological states and vanillic acid supplementation on vanillin production was studied using standard ferulic acid as a substrate in an effort to achieve further improvement in vanillin yield. In the presence of vanillic acid, 18 h cultured cells using 2 g/L of standard and isolated ferulic acid produced vanillin concentrations of up to 0.71 and 0.48 g/L, respectively. Furthermore, intermediates involved in the ferulic acid catabolic pathway and their interrelations were studied using GC-MS analysis. Results indicated that two different routes were involved in the catabolism of standard ferulic acid, and similar metabolic routes were observed for an isolated ferulic acid stream. These findings effectively evaluated isolated ferulic acid for sustainable vanillin production while reducing agro-industrial waste pollution.


Assuntos
Amycolatopsis , Zea mays , Amycolatopsis/metabolismo , Zea mays/metabolismo , Ácido Vanílico/metabolismo , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Biotransformação
5.
Appl Microbiol Biotechnol ; 108(1): 113, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212964

RESUMO

Substituted benzaldehydes are the most commonly used natural-occurring flavours in the world. The consumer's preference for 'natural or organic' aromas has increased the request for flavours possessing the 'natural' status. The resulting shortage of aromatic aldehydes of extractive origin, such as vanillin, veratraldehyde and piperonal, can be offset by developing a new biotechnological synthesis method. Here, we report a study on the microbiological reduction of five natural benzoic acid derivatives, namely p-anisic, vanillic, veratric, piperonylic and eudesmic acids, to produce the corresponding fragrant aldehydes. We found that different Basidiomycota strains can efficiently perform this transformation, with good chemical selectivity and tolerance to the toxicity of substrates and products. Besides confirming the carboxylic acid reductase activity of the already studied fungi Pycnoporus cinnabarinus, we discovered that other species such as Pleurotus eryngii, Pleurotus sapidus and Laetiporus sulphureus as well as the non-ligninolytic fungi Lepista nuda are valuable microorganisms for the synthesis of anisaldehyde, vanillin, veratraldehyde, piperonal and 3,4,5-trimethoxybenzaldehyde from the corresponding acids. According to our findings, we propose a reliable process for the preparation of the above-mentioned aldehydes, in natural form. KEY POINTS: • Fragrant benzaldehydes were obtained by biotransformation. • Basidiomycota strains reduced substituted benzoic acid to the corresponding aldehydes. • Anisaldehyde, vanillin, veratraldehyde, piperonal and 3,4,5-trimethoxybenzaldehyde were prepared in natural form.


Assuntos
Basidiomycota , Benzaldeídos , Benzodioxóis , Benzaldeídos/metabolismo , Ácido Vanílico/metabolismo , Aldeídos/metabolismo , Basidiomycota/metabolismo
6.
Microb Cell Fact ; 22(1): 147, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543600

RESUMO

Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most popular flavors with wide applications in food, fragrance, and pharmaceutical industries. However, the high cost and limited yield of plant extraction failed to meet the vast market demand of natural vanillin. Vanillin biotechnology has emerged as a sustainable and cost-effective alternative to supply vanillin. In this review, we explored recent advances in vanillin biosynthesis and highlighted the potential of vanillin biotechnology. In particular, we addressed key challenges in using microorganisms and provided promising approaches for improving vanillin production with a special focus on chassis development, pathway construction and process optimization. Future directions of vanillin biosynthesis using inexpensive precursors are also thoroughly discussed.


Assuntos
Benzaldeídos , Biotecnologia , Benzaldeídos/metabolismo
7.
Bioresour Technol ; 385: 129420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399953

RESUMO

Coconut coir waste is a rich lignocellulosic biomass. The coconut coir waste generated from temples is resistant to natural degradation, and its accumulation causes environmental pollution. Ferulic acid, a vanillin precursor, was extracted from the coconut coir waste by hydro-distillation extraction. The extracted ferulic acid was used for vanillin synthesis by Bacillus aryabhattai NCIM 5503 under submerged fermentation. In the present study, the Taguchi DOE (design of experiment) software was used to optimize the fermentation process, which resulted in a 1.3 fold increase in vanillin yield (640.96 ± 0.02 mg/L), as compared to the unoptimized yield of 495.96 ± 0.01 mg/L. The optimized media for enhanced vanillin production comprised; fructose 0.75 % (w/v), beef extract 1 % (w/v), pH 9, temperature 30℃, agitation speed 100 rpm, trace metal solution 1 % (v/v), and ferulic acid 2 % (v/v). The results show that the commercial production of vanillin can be envisioned using coconut coir waste.


Assuntos
Bacillus , Lignina , Lignina/metabolismo , Bacillus/metabolismo , Benzaldeídos/metabolismo
8.
Microb Cell Fact ; 22(1): 89, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131175

RESUMO

BACKGROUND: Aromatic α-hydroxy ketones, such as S-2-hydroxypropiophenone (2-HPP), are highly valuable chiral building blocks useful for the synthesis of various pharmaceuticals and natural products. In the present study, enantioselective synthesis of 2-HPP was investigated by free and immobilized whole cells of Pseudomonas putida ATCC 12633 starting from readily-available aldehyde substrates. Whole resting cells of P. putida, previously grown in a culture medium containing ammonium mandelate, are a source of native benzoylformate decarboxylase (BFD) activity. BFD produced by induced P. putida resting cells is a highly active biocatalyst without any further treatment in comparison with partially purified enzyme preparations. These cells can convert benzaldehyde and acetaldehyde into the acyloin compound 2-HPP by BFD-catalyzed enantioselective cross-coupling reaction. RESULTS: The reaction was carried out in the presence of exogenous benzaldehyde (20 mM) and acetaldehyde (600 mM) as substrates in 6 mL of 200 mM phosphate buffer (pH 7) for 3 h. The optimal biomass concentration was assessed to be 0.006 g dry cell weight (DCW) mL- 1. 2-HPP titer, yield and productivity using the free cells were 1.2 g L- 1, 0.56 g 2-HPP/g benzaldehyde (0.4 mol 2-HPP/mol benzaldehyde), 0.067 g 2-HPP g- 1 DCW h- 1, respectively, under optimized biotransformation conditions (30 °C, 200 rpm). Calcium alginate (CA)-polyvinyl alcohol (PVA)-boric acid (BA)-beads were used for cell entrapment. Encapsulated whole-cells were successfully employed in four consecutive cycles for 2-HPP production under aerobic conditions without any noticeable beads degradation. Moreover, there was no production of benzyl alcohol as an unwanted by-product. CONCLUSIONS: Bioconversion by whole P. putida resting cells is an efficient strategy for the production of 2-HPP and other α-hydroxyketones.


Assuntos
Carboxiliases , Hidroxipropiofenona , Pseudomonas putida , Pseudomonas putida/metabolismo , Carboxiliases/metabolismo , Benzaldeídos/metabolismo , Estereoisomerismo , Cetonas/metabolismo , Acetaldeído/química , Acetaldeído/metabolismo
9.
Microb Cell Fact ; 22(1): 48, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899374

RESUMO

Improving the resistance of Saccharomyces cerevisiae to vanillin, derived from lignin, will benefit the design of robust cell factories for lignocellulosic biorefining. The transcription factor Yrr1p mediates S. cerevisiae resistance to various compounds. In this study, eleven predicted phosphorylation sites were mutated, among which 4 mutants of Yrr1p, Y134A/E and T185A/E could improve vanillin resistance. Both dephosphorylated and phosphorylated mutations at Yrr1p 134 and 185 gathered in the nucleus regardless of the presence or absence of vanillin. However, the phosphorylated mutant Yrr1p inhibited target gene expression, while dephosphorylated mutants promoted expression. Transcriptomic analysis showed that the dephosphorylated Yrr1p T185 mutant, under vanillin stress, upregulated ribosome biogenesis and rRNA processing. These results demonstrate the mechanism by which Yrr1p phosphorylation regulates the expression of target genes. The identification of key phosphorylation sites in Yrr1p offers novel targets for the rational construction of Yrr1p mutants to improve resistance to other compounds.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilação , Benzaldeídos/metabolismo
10.
Biotechnol Bioeng ; 120(4): 903-916, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36601666

RESUMO

Vanilla is the most commonly used natural flavoring agent in industries like food, flavoring, medicine, and fragrance. Vanillin can be obtained naturally, chemically, or through a biotechnological process. However, the yield from vanilla pods is low and does not meet market demand, and the use of vanillin produced by chemical synthesis is restricted in the food and pharmaceutical industries. As a result, the biotechnological process is the most efficient and cost-effective method for producing vanillin with consumer-demanding properties while also supporting industrial applications. Toxin-free biovanillin production, based on renewable sources such as industrial wastes or by-products, is a promising approach. In addition, only natural-labeled vanillin is approved for use in the food industry. Accordingly, this review focuses on biovanillin production from lactic acid bacteria (LAB), which is generally recognized as safe (GRAS), and the cost-cutting efforts that are utilized to improve the efficiency of biotransformation of inexpensive and readily available sources. LABs can utilize agro-wastes rich in ferulic acid to produce ferulic acid, which is then employed in vanillin production via fermentation, and various efforts have been applied to enhance the vanillin titer. However, different designs, such as response surface methods, using immobilized cells or pure enzymes for the spontaneous release of vanillin, are strongly advised.


Assuntos
Lactobacillales , Lactobacillales/metabolismo , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo
11.
Int J Neurosci ; 133(10): 1096-1108, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35321633

RESUMO

BACKGROUND: Cerebral ischemia leads to linguistic and motor dysfunction, as the death of neurons in ischemic core is permanent and non-renewable. An innovative avenue is to induce and/or facilitate reprogramming of adjacent astrocytes into neurons to replace the lost neurons and re-establish brain homeostasis. PURPOSE: This study aimed to investigate whether the p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, could facilitate the reprogramming of oxygen-glucose deprivation/reperfusion (OGD/R)-damaged astrocytes into neurons. STUDY DESIGN/METHODS: The primary parenchymal astrocytes of rat were exposure to OGD and reperfusion with define culture medium. Cells were then incubated with different concentration of p-HBA (1, 10, 100, 400 µM) and collected at desired time point for reprogramming process analysis. RESULTS: OGD/R could elicit endogenous neurogenic program in primary parenchymal astrocytes of rat under define culture condition, and these so-called reactive astrocytes could be reprogrammed into neurons. However, the neonatal neurons produced by this endogenous procedure could not develop into mature neurons, and the conversion rate was only 1.9%. Treatment of these reactive astrocytes with p-HBA could successfully promote the conversion rate to 6.1%, and the neonatal neurons could develop into mature neurons within 14 days. Further analysis showed that p-HBA down-regulated the Notch signal component genes Dll1, Hes1 and SOX2, while the transcription factor NeuroD1 was up-regulated. CONCLUSION: The results of this study demonstrated that p-HBA facilitated the astrocyte-to-neuron conversion. This chemical reprogramming was mediated by inhibition of Notch1 signaling pathway and transcriptional activation of NeuroD1.


Assuntos
Astrócitos , Benzaldeídos , Ratos , Animais , Astrócitos/metabolismo , Benzaldeídos/metabolismo , Encéfalo/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Neurônios/metabolismo , Células Cultivadas
12.
Plant Biol (Stuttg) ; 25(1): 3-7, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36066305

RESUMO

Vanillin is the most popular flavor compound in the world. Substantial effort were made in the last decades to completely elucidate the metabolic pathway that leads to vanillin in plants, with some controversy reported. In V. planifolia, vanillin biosynthesis occurs in plastids or in redifferentiated-plastids termed ''phenyloplasts''. More recently, it was shown that all enzymes required for the conversion of [14 C]-phenylalanine to [14 C]-vanillin-glucoside are confined within that organelle. However, knowing that some of these enzymes are cytosolic or ER-membrane bound in most plant species, it raises questions on the interpretation of data obtained from the technique used and on the true localization of the biosynthetic enzymes in V.planifolia. In addition, intense debate has emerged about the real participation of last enzyme of the pathway involving vanillin synthase (VpVAN) in the direct conversion of ferulic acid to vanillin. With the discovery of another enzyme capable of this conversion and the lack of activity of VpVAN in vitro, further disagreement emerged. One additional challenge to VpVAN being necessary and sufficient is that the transcript for this protein is abundant invarious non-vanillin-producing tissues of the vanilla plant. In this viewpoint, we discuss the findings surrounding the cellular-localization and activity of enzymes of vanillin biosynthesis. This will help to further understand the pathway and urge for additional research study to resolve the debate.


Assuntos
Especiarias , Vanilla , Vanilla/metabolismo , Benzaldeídos/metabolismo
13.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345536

RESUMO

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Assuntos
Benzaldeídos/metabolismo , Aromatizantes/metabolismo , Bacillus subtilis/metabolismo , Microbiologia Industrial , Pseudomonas fluorescens/metabolismo , Enterococcus faecium/metabolismo , Meios de Cultura , Alcaligenes faecalis/metabolismo , Fermentação
14.
Bioprocess Biosyst Eng ; 45(11): 1811-1824, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183291

RESUMO

Biovanillin production by a wild strain of Bacillus cereus NCIM-5727 is studied using eugenol as the precursor aiming to achieve maximum vanillin productivity. Based on shake flask optimization, molar yield and global volumetric productivity of vanillin reached up to 71.2% (6.6 gL-1) and 0.18 g(Lh)-1, respectively, at 36 h by resting cells of B. cereus NCIM-5727 at the optimum cell concentration of 3 gL-1 using eugenol concentration of 10 gL-1 at 37 ºC, buffer pH 7.0, buffer volume 10%, and shaking speed 180 rpm. Furthermore, small-scale optimization in a bioreactor at the controlled aeration rate of 0.5 Lmin-1, agitation rate of 210 rpm, and pH 7.0 enhanced the global volumetric productivity of vanillin up to 0.28 g(Lh)-1 at 25 h of bioconversion. The highest vanillin molar yield (75.2%) is reported using resting cells of B. cereus NCIM-5727 upon eugenol biotransformation and found stable for 10 h.


Assuntos
Bacillus cereus , Eugenol , Eugenol/metabolismo , Bacillus cereus/metabolismo , Benzaldeídos/metabolismo , Biotransformação
15.
Bioorg Med Chem ; 72: 117000, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36095944

RESUMO

Vanillic acid has always been in high-demand in pharmaceutical, cosmetic, food, flavor, alcohol and polymer industries. Present study achieved highly pure synthesis of vanillic acid from vanillin using whole cells of Ochrobactrum anthropi strain T5_1. The complete biotransformation of vanillin (2 g/L) in to vanillic acid (2.2 g/L) with 95 % yield was achieved in single step in 7 h, whereas 5 g/L vanillin was converted to vanillic acid in 31 h. The vanillic acid thus produced was validated using LC-MS, GC-MS, FTIR and NMR. Further, vanillic acid was evaluated for in vitro anti-tyrosinase and cytotoxic properties on B16F1 skin cell line in dose dependent manner with IC50 values of 15.84 mM and 9.24 mM respectively. The in silico Swiss target study predicted carbonic acid anhydrase IX and XII as key targets of vanillic acid inside the B16F1 skin cell line and revealed the possible mechanism underlying cell toxicity. Molecular docking indicated a strong linkage between vanillic acid and tyrosinase through four hydrogen and several hydrophobic bonds, with ΔG of -3.36 kJ/mol and Ki of 3.46 mM. The bioavailability of vanillic acid was confirmed by the Swiss ADME study with no violation of Lipinski's five rules.


Assuntos
Ochrobactrum anthropi , Ácido Vanílico , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Ácido Carbônico , Hidrogênio , Simulação de Acoplamento Molecular , Ochrobactrum anthropi/metabolismo , Preparações Farmacêuticas , Polímeros , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia
16.
Protein Expr Purif ; 197: 106109, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35533785

RESUMO

The ferulic acid (FA) represents a high-value molecule with applications in the cosmetic and pharmaceutical industries. This aromatic molecule is derived from lignin and can be enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. This process starts with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases. Therefore, here, we report the successfully expression, purification as well as the initial structural and biochemical characterization of a stable, correctly folded, and catalytically active bacterial feruloyl-CoA synthase (here named FCS3) isolated from a lignin-degrading microbial consortium. The purification of recombinant FCS3 to near homogeneity was achieved using affinity chromatography. The FCS3 structure is composed of a mixture of α and ß secondary structures and most likely forms stable homodimers in solution. The FCS3 presented a notable structural stability at alkaline pH values and it was able to convert FA and coenzyme A (CoA) into feruloyl-CoA complex at room temperature. This study should provide a useful basis for future biotechnological applications of FCS3, especially in the field of conversion of lignin-derived FA into high value compounds.


Assuntos
Benzaldeídos , Lignina , Acil Coenzima A/metabolismo , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo
17.
J Zhejiang Univ Sci B ; 23(3): 230-240, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35261218

RESUMO

Marine fungi are important members of the marine microbiome, which have been paid growing attention by scientists in recent years. The secondary metabolites of marine fungi have been reported to contain rich and diverse compounds with novel structures (Chen et al., 2019). Aspergillus terreus, the higher level marine fungus of the Aspergillus genus (family of Trichocomaceae, order of Eurotiales, class of Eurotiomycetes, phylum of Ascomycota), is widely distributed in both sea and land. In our previous study, the coral-derived A. terreus strain C23-3 exhibited potential in producing other biologically active (with antioxidant, acetylcholinesterase inhibition, and anti-inflammatory activity) compounds like arylbutyrolactones, territrems, and isoflavones, and high sensitivity to the chemical regulation of secondary metabolism (Yang et al., 2019, 2020; Nie et al., 2020; Ma et al., 2021). Moreover, we have isolated two different benzaldehydes, including a benzaldehyde with a novel structure, from A. terreus C23-3 which was derived from Pectinia paeonia of Xuwen, Zhanjiang City, Guangdong Province, China.


Assuntos
Antozoários , Benzaldeídos , Acetilcolinesterase/metabolismo , Animais , Antozoários/microbiologia , Anti-Inflamatórios/farmacologia , Aspergillus/química , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Camundongos , Células RAW 264.7 , Transdução de Sinais
18.
Mol Biotechnol ; 64(8): 861-872, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35192168

RESUMO

Vanillin production by metabolic engineering of proprietary microbial strains has gained impetus due to increasing consumer demand for naturally derived products. Here, we demonstrate the use of rice cell cultures metabolically engineered with vanillin synthase gene (VpVAN) as a plant-based alternative to microbial vanillin production systems. VpVAN catalyzes the signature step to convert ferulic acid into vanillin in Vanilla planifolia. As ferulic acid is a phenylpropanoid pathway intermediate in plant cells, rice calli cells are ideal platform for in vivo vanillin synthesis due to the availability of its precursor. In this study, rice calli derived from embryonic rice cells were metabolically engineered with a codon-optimized VpVAN gene using Agrobacterium-mediated transformation. The putative transformants were selected based on their proliferation on herbicide-supplemented N6D medium. Expression of the transgenes were confirmed through a ß-glucuronidase (GUS) reporter assay and polymerase chain reaction (PCR) analysis provided evidence of genetic transformation. The semiquantitative RT-PCR and real-time (RT)-qPCR revealed expression of VpVAN in six transgenic calli lines. High-performance liquid chromatography identified the biosynthesis of vanillin in transgenic calli lines, with the highest yielding line producing 544.72 (± 102.50) µg of vanillin-g fresh calli. This work serves as a proof-of-concept to produce vanillin using metabolically engineered rice cell cultures.


Assuntos
Oryza , Vanilla , Benzaldeídos/metabolismo , Engenharia Metabólica , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vanilla/química , Vanilla/genética , Vanilla/metabolismo
19.
Food Chem ; 384: 132497, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219994

RESUMO

Current methods for vanilla bean curing are long and reduce the enzymatic activity necessary for flavor development. High hydrostatic pressure (HHP) at 50-600 MPa was used to improve phenolic compounds formation and ß-d-glucosidase activity in vanilla beans compared with scalded beans. Phenolics were analyzed by HPLC and ß-d-glucosidase activity by spectrophotometry. Vanillin was the main phenolic and it was formed by ß-d-glucovanillin hydrolysis and vanillyl alcohol oxidation. HHP improved vanillin content and influenced ß-d-glucosidase activity. At the beginning of the curing the highest increments of vanillin were produced at 400 MPa (up to 15%), while at the end, this was observed at 50 (138%) and 600 MPa (74%). Maximum increment of up to 400% in ß-d-glucosidase activity was observed from 100 to 300 MPa, which was attributed to tissue decompartmentalization, and conformational changes induced by pressure. HHP could be used during vanilla curing to improve vanillin content and ß-d-glucosidase activity.


Assuntos
Vanilla , Benzaldeídos/metabolismo , Cromatografia Líquida de Alta Pressão , Glucosidases/metabolismo , Pressão Hidrostática , Fenóis/metabolismo , Vanilla/metabolismo
20.
World J Microbiol Biotechnol ; 38(3): 40, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018518

RESUMO

Vanillin is a popular flavoring agent widely used around the world. Vanillin is generated by natural extraction, chemical synthesis, or tissue culture technology, but these production methods no longer meet the increasing worldwide demand for vanillin. Accordingly, a biotechnological approach may provide an effective replacement route to obtaining vanillin. Processes for environmentally friendly production of vanillin in microorganisms from different carbon sources, such as eugenol, isoeugenol, lignin, ferulic acid, sugars, and waste residues, with high productivity and yield have been developed. However, challenges remain for optimizing the vanillin biosynthesis process and further improving production titer and yield. In this review, successful and applicable strategies for increasing vanillin titer and yield in different microorganisms are summarized. Additionally, perspectives for further optimizing the production of vanillin are discussed.


Assuntos
Benzaldeídos/metabolismo , Biotecnologia , Engenharia Metabólica , Benzaldeídos/química , Ácidos Cumáricos/metabolismo , Eugenol/análogos & derivados , Fermentação , Aromatizantes/metabolismo , Glucose , Lignina/biossíntese , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...